首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41662篇
  免费   4337篇
  国内免费   2398篇
电工技术   855篇
综合类   4133篇
化学工业   8117篇
金属工艺   5198篇
机械仪表   2040篇
建筑科学   9431篇
矿业工程   1884篇
能源动力   574篇
轻工业   2123篇
水利工程   1463篇
石油天然气   1303篇
武器工业   340篇
无线电   1583篇
一般工业技术   5618篇
冶金工业   2782篇
原子能技术   160篇
自动化技术   793篇
  2024年   84篇
  2023年   592篇
  2022年   1105篇
  2021年   1442篇
  2020年   1337篇
  2019年   1208篇
  2018年   1215篇
  2017年   1628篇
  2016年   1659篇
  2015年   1644篇
  2014年   2448篇
  2013年   2846篇
  2012年   2937篇
  2011年   3058篇
  2010年   2293篇
  2009年   2374篇
  2008年   2192篇
  2007年   2667篇
  2006年   2483篇
  2005年   2107篇
  2004年   1818篇
  2003年   1505篇
  2002年   1320篇
  2001年   1131篇
  2000年   936篇
  1999年   830篇
  1998年   635篇
  1997年   527篇
  1996年   471篇
  1995年   403篇
  1994年   328篇
  1993年   272篇
  1992年   206篇
  1991年   146篇
  1990年   135篇
  1989年   127篇
  1988年   67篇
  1987年   61篇
  1986年   17篇
  1985年   21篇
  1984年   21篇
  1983年   18篇
  1982年   21篇
  1981年   9篇
  1980年   16篇
  1979年   17篇
  1964年   4篇
  1963年   2篇
  1961年   2篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Graphite–SiC micro-composites have been prepared in–house by carbothermal reduction process. Controlling the process parameters including the weight ratio of SiO2 to graphite as well as carbothermal reduction temperature during the micro-composite preparation favors the homogeneous formation of SiC with preferred morphologies like ribbons and whiskers/fibers. The micro-composite modified low carbon MgO-C refractories have exhibited significantly improved bulk properties over the standard composition. To understand the beneficial role of SiC reinforcement on hot strength performance under air oxidizing conditions, we propose a scaling parameter known as strength factor (fs) based on the ratio of hot strength (HMOR) to cold strength (CCS). Correlating the strength factor data (fs) with oxidative damage provides new insights into the reinforcing effects of distinct SiC morphologies in this new class of micro-composite fortified refractory systems over the standard compositions.  相似文献   
42.
The effects of joining temperature (TJ) and time (tJ) on microstructure of the transient liquid phase (TLP) bonding of GTD-111 superalloy were investigated. The bonding process was applied using BNi-3 filler at temperatures of 1080, 1120, and 1160 °C for isothermal solidification time of 195, 135, and 90 min, respectively. Homogenization heat treatment was also applied to all of the joints. The results show that intermetallic and eutectic compounds such as Ni-rich borides, Ni−B−Si ternary compound and eutectic-γ continuously are formed in the joint region during cooling. By increasing tJ, intermetallic phases are firstly reduced and eventually eliminated and isothermal solidification is completed as well. With the increase of the holding time at all of the three bonding temperatures, the thickness of the athermally solidified zone (ASZ) and the volume fraction of precipitates in the bonding area decrease and the width of the diffusion affected zone (DAZ) increases. Similar results are also obtained by increasing TJ from 1080 to 1160 °C at tJ=90 min. Furthermore, increasing the TJ from 1080 to 1160 °C leads to the faster elimination of intermetallic phases from the ASZ. However, these phases are again observed in the joint region at 1180 °C. It is observed that by increasing the bonding temperature, the bonding width and the rate of dissolution of the base metal increase. Based on these results, increasing the homogenization time from 180 to 300 min leads to the elimination of boride precipitates in the DAZ and a high uniformity of the concentration of alloying elements in the joint region and the base metal.  相似文献   
43.
The fashionable Parr–Pearson (PP) atoms-in-molecule/bonding (AIM/AIB) approach for determining the exchanged charge necessary for acquiring an equalized electronegativity within a chemical bond is refined and generalized here by introducing the concepts of chemical power within the chemical orthogonal space (COS) in terms of electronegativity and chemical hardness. Electronegativity and chemical hardness are conceptually orthogonal, since there are opposite tendencies in bonding, i.e., reactivity vs. stability or the HOMO-LUMO middy level vs. the HOMO-LUMO interval (gap). Thus, atoms-in-molecule/bond electronegativity and chemical hardness are provided for in orthogonal space (COS), along with a generalized analytical expression of the exchanged electrons in bonding. Moreover, the present formalism surpasses the earlier Parr–Pearson limitation to the context of hetero-bonding molecules so as to also include the important case of covalent homo-bonding. The connections of the present COS analysis with PP formalism is analytically revealed, while a numerical illustration regarding the patterning and fragmentation of chemical benchmarking bondings is also presented and fundamental open questions are critically discussed.  相似文献   
44.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   
45.
The design of an interfacial structure is particularly important for load transfer in composites. In this paper, different amounts of carbon nanotubes (CNTs) were grafted onto the carbon fiber (CF) surface by adjusting grown temperature using injection chemical vapor deposition (ICVD). The prepared CF preform grafted with CNTs (CNTs-CF) were used to reinforce magnesium alloy by squeeze casting process. The microstructures were analyzed by means of optical microscope (OM) and scanning electron microscope (SEM), and the interlaminar shear strength (ILSS) and tensile strength of the composites were determined by double-notch shear test and tensile test. The results indicated that moderate ILSS was more conducive to improving the tensile properties of carbon fiber reinforced magnesium matrix (Cf/Mg) composites. Compared with Cf/Mg, the tensile strength of composite with CNTs increased by about 80%. For Cf/Mg composites grafted with CNTs, CNTs had the effects of delaying crack propagation and increasing energy consumption by the pull-out and bridging mechanism, which were the main reasons for improving the strength. The analysis of shear fracture surface showed that the crack propagation path can be optimized by adjusting the amounts of grafted CNTs. The presence of CNTs affects the stress distribution and consequently the crack initiation as well as the crack propagation.  相似文献   
46.
In this study, SiC whiskers (SCWS) reinforced geopolymer composites (SCWS/KGP) and their ceramic products (SCWS/leucite) were prepared, and effects of SiC whiskers contents on the microstructure and flexural strength of the SCWS/KGP and SCWS/leucite composites were investigated. The results show that the whisker addition has little influence on both phase composition and thermal shrinkage of the KGP composites, but a suitable content of whisker will result in the improved flexural strength, and when the SCWS content is 2 wt%, flexural strength of the SCWS/KGP composite is enhanced by 95% compared with the neat geopolymer. The flexural strength of the composites can be further enhanced significantly after the composites being treated at 1100 °C and 1200 °C and flexural strength of the composite with SCWS content of 2 wt% was 107% and 125% higher than the untreated counterpart, respectively. The increase in flexural strength of the composites should be attributed to the strong leucite formation, whisker debonding and pulling out from matrix during the fracturing process based on the good interfacial bonding state between whisker and leucite matrix.  相似文献   
47.
TiO2 is an ideal substitute to ZrSiO4 ceramic opacifier, yet it is limited to application because of the undesirable yellowing resulting from rutile formation. Herein, the SiO2-CaCO3-TiO2 composite opacifier (Si-Ca-Ti) was constructed. The glaze used Si-Ca-Ti presents a superior opacification performance than ZrSiO4 opacified glaze without causing yellowing, showing L*, a*, b* values of 94.81, -0.67 and 3.23. By comparison, the glaze using SiO2, CaCO3, and TiO2 mixture shows lower opacification and yellowish surface with L* and b* values of 92.99 and 5.36. It is revealed that there is a close interface bonding among SiO2, CaCO3 and TiO2 in Si-Ca-Ti, which promotes their combination reaction to generate opacification phase titanite and inhibit rutile formation when sintering, resulting in the white surface and opacification improvement of the glaze. This study proposes a green and efficient strategy to achieve white and highly opacified glaze for sanitary ceramics, exhibiting good application prospect.  相似文献   
48.
木片筛余物高得率半化学法清洁制浆技术研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以太阳纸业备料车间木片筛选碎料(筛余物)为原料,对其烧碱法半化学制浆的实验室工艺和生产试验进行了研究。结果表明,筛余物采用半化学法制浆可获得较高得率和环压强度的纸浆,且用碱量对纸浆性能有显著影响。相对8%NaOH (相对于绝干原料)化学预处理,采用14%NaOH化学预处理结合两段浆浓22%的高浓磨浆工艺,所制半化学浆抄造浆张的裂断长和环压指数分别达2.89 km和9.76 N·m/g,是前者的1.9倍和1.2倍,而且优于现用国内OCC废纸浆抄造浆张;生产试验得到的浆张性能指标与实验室相吻合,其中紧度和环压强度分别达到GB/T 13023—2008瓦楞芯(原)纸AA级和A级优等品要求。  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号